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Abstract—The resistor-capacitor network (RC models) is a
common approach to model thermal systems in buildings that
proves advantageous in improving a building’s energy efficiency.
This paper presents a framework for energy consumption
cost estimation and power efficient control in buildings-based
model predictive control. The proposed framework calculates
the electricity cost for dwellings based on their sizes using
RC models. Additionally, it ensures consistent thermal comfort
within the controlled building even during performance issues.
The calculation of the cost of energy consumption takes into
account the electricity tariff provided by Hydro-Quebec, Mon-
treal, Quebec, Canada. Model Predictive Control (MPC) along
with two backup controllers (ON/OFF control and Proportional-
Derivative-Integral (PID) control) optimize the thermal model
in a building, ensuring the desired indoor temperature effi-
ciently with low cost. The Simulation results conducted on
the Matlab/Simulink platform demonstrated that MPC control
outperforms the other controllers in terms of energy consumption
minimization and cost.

Index Terms—Power consumption cost, model predictive con-
trol, smart buildings, thermal systems control.

I. INTRODUCTION

Approximately 20% to 40% of the existing energy consump-
tion is associated with the building industries, and this pro-
portion is consistently rising between 0.5% to 5% in western
countries [1]. The primary consumers of electricity on a global
scale are the residential and commercial sectors, collectively
accounting for approximately 60% of the world’s electricity
usage, as reported by the United Nations Environment Pro-
gram (UNEP) [2]. Consequently, it holds significant economic
and environmental importance to devise efficient strategies
for reducing power consumption in buildings and reducing
the cost accordingly. Such efforts can make a substantial
contribution to the smart buildings initiative [7].

A diverse range of traditional and contemporary control
methods have been created and applied to regulate power con-
sumption is building systems, with Model Predictive Control
(MPC) being a significant technique in this domain [1]–[3],
[5], [8], [10]. Despite the presence of certain limitations, such

as model dependence, tuning complexities, and real-system
implementation challenges, the MPC controller is widely rec-
ognized as one of the most potent methods for controlling en-
ergy consumption in the realm of smart buildings [1], [2], [9].
The MPC control is a particularly prevalent technique in this
domain, largely due to its adeptness in managing constraints,
dynamic processes, time variations, delays, uncertainties, and
disturbances. The controller also demonstrates the capacity to
effectively handle multivariable and nonlinear systems, with
accurate predictions and efficient performance [1], [4].

This topic has garnered significant interest, leading to the
publication of review papers on the matter. For instance,
the MPC control showed superior performance in energy
efficiency and comfort criteria when compared to the other
controllers [8]. In [9], Various formulations of the MPC
controller, including centralized, decentralized, and distributed,
along with the proportional-integral and derivative (PID) con-
troller, were implemented on a multi-zone dwelling to achieve
temperature tracking and minimize the amount of power
used. A new framework of decentralized model predictive
control (DMPC) drawing from principles of game theory
and discrete event system was implemented to four zone
building established that the developed approach validated
to significantly reduce the required maximum power while
simultaneously ensuring thermal comfort is maintained within
an acceptable level [1]. The MPC approach has demonstrated
its effectiveness in efficiently managing optimal controls for
cold storage [13]. A tube-based robust MPC control was
proposed and implemented for indoor temperature control. The
outcomes demonstrate that the suggested approach can lead to
a substantial reduction in operating expenses, with a minimum
of 24% improvement in contrast to classical MPC control
schemes. Moreover, it excels in maintaining better control over
indoor temperature [14].

In spite of the extensive literature available within the
context of smart buildings aimed at optimizing power con-
sumption, as previously indicated, none of these studies have



explored the computation of energy expenditures relative to the
building sizes based on the RC thermal models. In addition,
although the MPC is recognized as a robust and versatile
design technique for controlling various physical systems, it
can encounter performance obstacles attributed to factors like
model mismatch and improper tuning of parameters including
prediction horizon, control horizon, and cost function weights
[11]. Therefore, this paper presents an straitforward solution
in the form of a switching control framework to preempt
performance problems stemming from the reasons mentioned
above. To recap, this work’s principal contributions can be
encapsulated in two primary facets:

1) We present a framework designed for facilitating con-
troller switching and estimating energy consumption
costs based on the zone’s sizes.

2) We introduce a simple solution to mitigate performance
problem of the whole system when employing the MPC
controller with less complexity.

II. PROBLEM FORMULATION

The essential control objective is to efficiently regulate
the level of the thermal comfort within the building while
minimizing power consumption and then calculate the energy
consumption cost of the controlled zone, all of this is achieved
while maintaining compliance with designer imposed restric-
tions. This can be expressed as an MPC algorithm involves a
quadratic optimization problem.

A. Thermal Dynamics Modeling of Buildings

Within this part, we utilize continuous-time differential
equations to demonstrate the thermal model of the system,
following the approach outened in [2], [3]. Subsequently,
we will discretize the model to employ it for controller
implementation. The system model can be expressed as:
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Here, F denotes the zones’ numbers. Tl (where l ∈
1, . . . , F ) represents the temperature inside the Zone l. Tj

stands for the internal temperature of an adjacent Zone j
(j ∈ 1, . . . , F\l). Ta represents the external temperature. Ra

l

denotes the thermal resistance from Zone l to the ambient
outdoor temperature. Cl signifies the heat capacity of Zone l.
Rd

jl describes the thermal resistance between the neighboring
zones l and j. Φl represents the power supplied to the thermal
device situated in Zone l. It’s essential to note that this model
is a generic representation widely utilized in prior works. For
simplicity’s sake, we assume in this work that one thermal
appliance is placed in each zone. The equation described in
Equation (1) can be depicted through the below state-space
model in a continuous-time representation:

ẋ = Ax+Bu+Wd

y = Cx,
(2)

where u = [u1, . . . , uF ]
T is the control input sequence,

x = [T1, . . . , TF ]
T denotes the states of the systems. The

system output, demonstrated as y = [y1, . . . , yF ]
T , which rep-

resents the internal temperature in all the zones. Additionally,
d = [T 1

a , . . . , T
F
a ]T symbolizes the disturbance in Zone l. The

matrices A, B, and W in Equation (2) are provided below:
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In Equation (2), C is a square identity matrix with dimen-
sions F .

The predictive feedback HVAC control signal is determined
through the minimization of the performance cost, a function
that encompasses both the control input and the system state.
The MPC optimization problem’s solution is executed in an
open-loop fashion. subsequently applying solely the initial ele-
ment of the generated control input sequences to the controlled
plant. This cycle is reiterated periodically, taking into account
updated measurements. The below block diagram (Figure 1)
depicting the closed-loop functionality of the HVAC MPC
controller.

Fig. 1. MPC block diagram.

B. MPC Setup
The discrete-time representation of the model is given by

discretizing equation (2) as:

x(k + 1) = Adisx(k) +Bdisu(k) +Wdisd(k),

y(k) = Cdisx(k),
(3)

The state vector is represented by x(k) ∈ RF , the control
input vector (heating power input) is u(k) ∈ RF , and the
system output vector is y(k) ∈ RF .



If we suppose xd(k) ∈ RF is the desired state and er(k) =
x(k) − xd(k) represents the error vector. The control input
applied to the system is determined by solving the subsequent
optimization problem at every time step t:

f = min
ui(0)

N−1∑
k=0

er(k)TQer(k) + uT (k)Ru(k) (4a)

s.t x(k + 1) = Adisx(k) +Bdisu(k) +Wdisd(k),

x0 = x(t), (4b)
xmin ≤ x(k) ≤ xmax, (4c)
0 ≤ u(k) ≤ umax, (4d)

for k = 0, . . . , N , where N represents the prediction
horizon that is set by the designer. Within the cost function
detailed in (4), R = RT > 0 and Q = QT ≥ 0 serves
as weighting matrices to impose penalties on HVAC control
input and the deviations in tracking, correspondingly.

The solution of the equation (4) yields a set of control values
U∗(x(t)) = {u∗

0, . . . , u
∗
N}. Among these, solely the initial

element u(t) = u∗
0 will be chosen and sent to the process. A

solver is needed to provide the solution of the MPC control
problem at every sampling moment. Thus, the open source
YALMIP toolbox [6] will be used with the MPC control design
to fulfill this requirement.

III. PROPOSED SOLUTION

Reiterating what was mentioned in Section (I), the aim is to
regulate and adjust the thermal comfort level while minimizing
the power consumption. Moreover, empower users to compute
electricity costs considering the controlled zone’s dimensions.
To ensure that customers receive a good service resulting in the
desired indoor temperature at their specified preferences, along
with minimal power consumption and cost, it’s imperative
to maintain continuous efficiency all the time. To overcome
challenges associated with the MPC controller, such as issues
with modeling consistency and complexities in tuning MPC
control parameters (like prediction horizon, control horizon,
and cost function weighting), we’ve introduced a graphical
user interface (GUI) tool. This tool has been designed to
effectively address the mentioned MPC controller issues. The
introduced framework facilitates seamless transitions between
three specific control strategies, with MPC acting as the
primary controller and PID and ON/OFF controllers serv-
ing as backup alternatives. The MPC control takes the lead
within this interface, managing thermal comfort and optimiz-
ing power consumption. Should any complications arise, users
have the option to switch to two alternative backup controllers
ensuring efficient regulation of system performance. Once the
issue is resolved, seamlessly reverting to the primary control
is executed.

Note that many approaches in literature have been imple-
mented to guarantee the stability performance of the MPC
controller such as Lyapunov criteria [1], [12]. However, that
requires an additional computations and considerations during
the design phase to ensure the stability which increase the

control complexity [2], [11] which restricts the application on
the real systems. In particular. when the embedded hardware
units have limited computational resources.

The proposed tool is equipped with the capability to enable
users to estimate their energy consumption costs based on
the zone sizes. This estimation is derived from the electricity
pricing structure provided by Hydro-Quebec, a significant
power company operating in Montreal, Quebec, Canada.

IV. SIMULATION EXPERIMENTS

In this paper, a framework is proposed and created by using
the graphical user interface (GUI) to calculate the energy
consumption cost of the selected zones based on the tariff
of Hydro-Quebec Company in Montreal-Quebec, Canada. All
simulations are conducted using the Matlab/Simulink platform.

The objective is to assure that the output (indoor tem-
perature) closely tracks the pre-specified set-point of 22°C
and determined by the user. The fluctuation in the outdoor
temperature is illustrated in Figure 2.

Fig. 2. Disturbance of ambient temperature.

In this simulation experiment, the time scale is standardized
to 200 time units. The prediction horizon is chosen as N =
10, the sampling period is Ts= 3-time steps and the initial
indoor temperature is 0°C. The simulation corresponds to
approximately 10 hours in real-time.

The RC parameters of the thermal model for these specific
zones were sourced from [2], are outlined in Table I and
Table II. The control approaches were implemented on two
distinct single zones varying in sizes (zone 1 and zone 3) and
outfitted with a heater each.

TABLE I
CONFIGURATION OF THERMAL PARAMETERS FOR HEATERS.

Zone 1 2 3 4
Ra

j 69.079 88.652 128.205 105.412
Cj 0.94 0.94 0.78 0.78

The thermal system’s output in Zone 1 and the correspond-
ing control signals for each controller are depicted in Figure 3
and Figure 4, respectively.



TABLE II
PARAMETERS OF THERMAL RESISTANCES FOR HEATERS.

Rr
12, Rr

21 Rr
13, Rr

31 Rr
14, Rr

41 Rr
23, Rr

32 Rr
24, Rr

42
709.2 1063.8 1063.8 1063.8 1063.8

Fig. 3. Indoor Temperature of Zone 1.

We repeated the experiment for Zone 3 with the same
setup, and the resulting indoor temperature data is presented
in Figure 5. Simultaneously, Figure 6 illustrates the control
signals generated by the applied controllers.

The simulation results for both zones make it evident that
MPC excels in achieving the desired comfort level within
the controlled zone with notably lower power consumption.
Furthermore, the output response of both thermal systems
for the two zones closely follows the setpoint throughout

Fig. 4. Control signal of the proposed controllers for zone 1

the simulation duration when we use the MPC. However,
when utilizing PID control and ON/OFF controllers, there is a
slight deviation observed around the setpoint. The time domain
specifications of the system output are illustrated in Table III, t
is obvious that even-though the both backup controllers casue
faster output response as they have less rise time, the output
controlled by the MPC control has less overshoot and less
settling time.

Fig. 5. Indoor Temperature of Zone 3.

Fig. 6. Control signal of the proposed controllers for zone 3

To determine the energy consumption needed by each
controller in Zone 1, we utilized a methodology that involves
integrating the power signal of each controller over the simu-
lation duration. Fig. 7 presents the data, indicating that MPC
control requires a total energy consumption of 0.522 kWh.
In contrast, users that use the PID control and the ON/OFF
control consume 7.31 kWh and 6.678 kWh, respectively.



TABLE III
TIME DOMAIN SPECIFICATIONS OF THE THERMAL SYSTEM OUTPUT FOR

ZONE 1 WITH THREE CONTROLLERS.

Rise time(sec) Overshoot (%) Settling time(sec)
MPC 2.3667 1.3761 2.8979
PID 0.9281 4.2869 6.2066

ON/OFF 1.9538 2.7832 199.4694

Fig. 7. Energy consumption

For cost estimation based on Hydro-Quebec regulations
in Montreal, QC, Canada, (4.678¢/kWh) the corresponding
amounts from Fig. 7 are what clients would need to pay over
the specified duration. Clearly, MPC proves to be superior
in both energy efficiency and performance compared to the
backup controllers. Utilizing MPC could lead to substantial
cost savings, emphasizing its potential for significant financial
benefits. The GUI proposed tool as shown in Fig. 8 gives the
customer a choice to estimate the cost of energy consumption
based on the area of the zone.

Fig. 8. Switching control window

V. CONCLUSION

This paper introduces a framework for estimating energy
consumption costs and implementing power-efficient control
in buildings through model predictive control. The framework
uses RC models to calculate electricity costs based on build-
ing sizes, ensuring consistent thermal comfort even during

performance issues. The energy consumption cost estimation
considers the electricity tariff from Hydro-Quebec, Canada.
The study employs MPC control alongside two backup con-
trollers (ON/OFF and PID) to regulate the thermal models
of the building within a switching control window, main-
taining indoor temperature as per user-defined settings with
reduced power consumption and cost. Simulation results using
Matlab/Simulink demonstrate MPC’s superior performance in
minimizing energy consumption and associated costs com-
pared to the other controllers.
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